The curriculum runs over 3 semesters (18 months) and consists of 14 modules: 10 basic and 4 advanced. You follow the basic modules during the first two semesters and the advanced modules in the final semester.

Along with your studies, you pursue a work-based learning for the company.

The 90 ECTS credits of this MSc are distributed as follows:

Modules obligatoires

Crédits ECTS2
Répétition du moduleSemestre de printemps
Public cibleÉtudiant-e-s du semestre 1
Description

This course covers Linear Algebra from basic matrix/vector operations to singular value decomposition and probabilities from fundamental basics to Markov chains and limit theorems, which are prerequires for most of the AI courses.

The course will be directed by examples and intuition rather than formalism. Python language will be used in examples and exercises. Octave (matlab) equivalent will also be available for the linear algebra part.

Although this course covers most of the basics, it is assumed students have some notion and background in linear algebra, probability and coding.

Labs will be application exercises (numeric or not) and exercises aiming at introducing aspects or notions that are not discussed in the course.

 

Chargé-e de cours

Ina Kodrasi
Théophile Gentilhomme

Assistant-e-s

Parvaneh Janbakhshi
Christine Marcel

Crédits ECTS4
Répétition du moduleSemestre de printemps
Public cibleÉtudiant-e-s du semestre 1
Description

The course gives global knowledge in data structure and algorithms. It is organized in 5 parts:

1. Introduction

2. Data structures and algorithms

3. Practical use of data formats

4. Advanced algorithms

5. Computing tools

Chargé-e de cours

Olivier Bornet

Assistant-e-s

Christine Marcel
Philip Abbet
William Droz
Salim Kayal
Flavio Tarsetti

Crédits ECTS4
Répétition du moduleSemestre de printemps
Public cibleÉtudiant-e-s du semestre 1

Chargé-e de cours

Michael Liebling

Assistant-e-s

Christine Marcel

Crédits ECTS4
Répétition du moduleSemestre de printemps
Public cibleÉtudiant-e-s du semestre 1

Chargé-e de cours

Philip N. Garner
Ina Kodrasi

Assistant-e-s

Christine Marcel

Crédits ECTS2
Répétition du moduleSemestre d'automne
Public cibleÉtudiant-e-s du semestre 2
Description

• AI and the Law

• AI and Data Protection

• AI and Ethics

• Reproducibility, What is it?

• Data Organization and Evaluation

• Version Control with git

• Code Sharing with GitLab

• Unit Testing and Continuous Integration

• Documentation and Reporting

• Packaging and Deployment

 

Chargé-e de cours

André Anjos
Portrait de Sébastien Marcel
Sébastien Marcel
Olivier Bornet

Assistant-e-s

Joël Dumoulin
Marie-Constance Landelle
Pavel Korshunov
Flavio Tarsetti
Christine Marcel
François Charlet

Crédits ECTS4
Répétition du moduleSemestre d'automne
Public cibleÉtudiant-e-s du semestre 2
Description

• Linear regression

• Logistic Regression

• Decision Trees

• Boosting

• Multi-layer Perceptron

 

Chargé-e de cours

Portrait de Sébastien Marcel
Sébastien Marcel
André Anjos
Jean-Marc Odobez
Andre Freitas

Assistant-e-s

Anshul Gupta
Tiago de Freitas Pereira
Michael Villamizar
Rabeeh Karimi Mahabedi
Christine Marcel
Danick Panchard
Pavel Korshunov
Anjith George
Marco Valentino

Crédits ECTS4
Répétition du moduleSemestre d'automne
Public cibleÉtudiant-e-s du semestre 2
Description

This class covers basic concepts in image and video processing as well as computer vision. Topics include image formation and sampling, image transforms, image enhancement, and image and video compression. Computer vision topics include points of interest, optical flow, and camera calibration.

• Introduction to Digital Image processing (imaging types and

formats, applications)

• Point operations, image histograms

• Spatial Filtering and convolutions

• Edge detection

• 2D Fourier Transforms and representation of images, sampling, and image resizing (low pass filters, pyramids)

• Color images and color transformations

• Interest points (detection, representation, invariance, matching, RANSAC...)

• Calibration

• Optical Flow

Chargé-e de cours

Michael Liebling
Jean-Marc Odobez

Assistant-e-s

Michael Villamizar
Christine Marcel

Crédits ECTS4
Répétition du moduleSemestre d'automne
Public cibleÉtudiant-e-s du semestre 2
Description

• Dimensionality Reduction and Clustering

• Kernel Methods and Support Vector Machines

• Graphical Models

• Exact and Approximate Inference in Bayesian Networks

• Probability Distribution Modelling

Chargé-e de cours

Portrait de Sébastien Marcel
Sébastien Marcel
André Anjos
James Henderson
Jean-Marc Odobez

Assistant-e-s

Samy Tafasca
Michael Villamizar
Rabeeh Karimi Mahabedi
Andreas Marfurt
Danick Panchard
Christine Marcel
Tiago de Freitas Pereira
Anjith George

Crédits ECTS4
Répétition du moduleSemestre d'automne
Public cibleÉtudiant-e-s du semestre 2
Description

This course will introduce the students the fundamentals of speech processing and provide them with the key formalisms, models and algorithms to implement speech processing applications such as, speech recognition, speech synthesis, paralinguistic speech processing, multichannel speech processing.

 

Course content

 

Introduction

why speech processing? speech production, speech perception, basic

phonetics

 

Speech signal analysis

Sampling, Quantization, Time domain processing, Frequency domain

processing, linear prediction, cepstrum, speech coding

Practical: Speech signal analysis in Octave and Praat

 

Machine learning for speech processing

Static classification, Sequence classification, Regression

Practical: Statistical pattern recognition, Hidden Markov models in Octave

 

Automatic speech recognition

Dynamic programming, Instance-based speech recognition, Hidden

Markov model-based speech recognition, Evaluation measures

Practical: Kaldi tutorial

 

Text-to-speech synthesis

Concatenative speech synthesis, Statistical parametric speech synthesis, Evaluation measures

Practical: Grapheme-to-phoneme conversion, HMM-based speech synthesis

 

Paralinguistics speech processing

Emotion, gender, accent, pathological speech assessment, Evaluation

measures

Practical: OpenSMILE tutorial

Chargé-e de cours

Mathew Magimai Doss

Assistant-e-s

Christine Marcel
Prasad Ravi
Julian Fritsch
Pavankumar S. Dubagunta
Enno Hermann

Crédits ECTS4
Répétition du moduleSemestre de printemps
Public cibleÉtudiant-e-s du semestre 3

Chargé-e de cours

Olivier Canévet

Assistant-e-s

Christine Marcel
Alexandre Nanchen

Crédits ECTS10
Répétition du moduleSemestre de printemps
Public cibleÉtudiant-e-s du semestre 1

Chargé-e de cours

Olivier Bornet
Joël Dumoulin

Assistant-e-s

Christine Marcel

Crédits ECTS30
Répétition du moduleSemestre d'automne
Public cibleÉtudiant-e-s du semestre 1 ou 2
Description

The aim of Module P02-AI Project(s) development is to develop the project(s) the student defines in Module P01 – AI Company strategy and Project(s) definition.

Chargé-e de cours

Joël Dumoulin
Olivier Bornet

Assistant-e-s

Christine Marcel
Jérôme Kämpf
Raphaëlle Luisier

Encore des questions?

Nos Student Managers sont là pour vous!
    Jean-Paul Droz
    Portrait de Federico Elia
    Portrait de Marina Mayor
    Portrait de Karine Moix
    Portrait de Céline Pellissier
    Portrait de Christelle Perruchoud
    Portrait de Sarah Taurian Alves