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Motivations
Application of energy Casimir method relies
on availability of suitable Casimir and Lya-
punov functions, whose computation are gen-
erally intractable. The universal approxima-
tion capability of neural networks and avail-
able machine learning software motivate us
to propose an effective neural network-based
framework to learn these Casimir and Lya-
punov functions.

Energy Casimir Control
Set-point control of port-Hamiltonian sys-
tems (PHSs):

ẋ = (J(x)−R(x))
∂H(x)

∂x
+G(x)u,

y = G⊤(x)
∂H(x)

∂x
,

(1)

• If desired equilibrium x∗ is a local mini-
mum of H , due to the passivity Ḣ(x) ≤
y⊤u, negative output feedback, i.e., u =
−y, would stabilize the system.

• However, if x∗ is not a local minimum of
H , energy Casimir control is needed.

Casimir function: C(x) is a Casimir, if

∂⊤C
∂x

(x)(J(x)−R(x)) = 0. (2)

Casimirs can be used to modify Hamiltonian
of system (1), therefore reshaping the local
minimum of Hamiltonian.
Energy Casimir Control: Consider the PHS
controller

ξ̇ = [Jc(ξ)−Rc(ξ)]
∂Hc

∂ξ
(ξ) +Gc(ξ)uc,

yc = G⊤
c (ξ)

∂Hc

∂ξ
(ξ),

(3)

and the negative feedback interconnection

u = −yc + v,uc = y + vc, (4)

Lemma 1 (A. van der Schaft, 2017) If one can
find Jc(ξ), Rc(ξ), Gc(ξ), Hc(ξ) for the con-
troller (3), a Casimir function C(·) for the closed-
loop system, a function Φ : R2 → R, and a
ξ∗, such that the Lyapunov function defined by
V = Φ(H + Hc, C) has a local minimum at
z∗ = (x∗, ξ∗), i.e.,

∂V

∂z
|z∗ = 0,

∂2V

∂z2
|z∗ > 0. (5)

Then the auxiliary inputs

v = −DG⊤(x)
∂V

∂x
(x, ξ),

vc = −DcG
⊤
c (ξ)

∂V

∂ξ
(x, ξ)

with D = D⊤ > 0,Dc = D⊤
c > 0 asymptoti-

cally stabilize the closed-loop system to (x∗, ξ∗).

Obstacles in application: No systematic ap-
proaches to design parameters and functions
appear in Lemma 1.

Main Results
General Idea

If controller structure matrices Jc(ξ),Rc(ξ),Gc(ξ)
are fixed a prior, use neural networks (NNs) to
learn desired functions Hc,Φ, C and controller
state ξ∗ such that (5) holds.

Training Objective

Denote with Hc,θ1 ,Φθ2 , Cθ3 the NN approxi-
mations of Hc,Φ and C, respectively. The
training targets are

1. Cθ3 must be a Casimir function for the
closed-loop system, i.e., the following
must be satisfied

∂⊤Cθ3

∂z
(z) (Jcl(z)−Rcl(z)) = 0. (6)

2. Vθ defined as Vθ = Φθ2(H + Hc,θ1 , Cθ3)
must have a local minimum at z∗ =
(x∗, ξ∗) for some ξ∗, i.e., the following
must be satisfied

∂Vθ

∂z
|z∗ = 0,

∂2Vθ

∂z2
|z∗ > 0. (7)

To satisfy (6), one could grid the region of
interest and require (6) holds on all grid
points. However, the computational complex-
ity is high, only approximate Casimir will
be learned and stability cannot be rigorously
guaranteed.

Reduce Training Complexity by
Casimir Parameterization

Suppose Jcl and Rcl are constant. Let
v1, . . . ,vr be the basis of ker (Jcl −Rcl). Then

∂C

∂z
(z) =

r∑
i=1

αi(z)vi (8)

for some scalar functions αi(z). A candidate
function C therefore is

C(z) = K(
r∑

i=1

βi(z
⊤vi)) (9)

for some scalar functions K(·), βi(·). As a re-
sult, the constraint (6) is inherently satisfied
and one only needs to minimize a loss function
measuring the violation of (7).

Loss Function Minimization

Use neural networks Kθ3 , βi,θi+3
to approxi-

mate K and βi. Construct the neural Lyapunov
function as

Vθ(z) = Φθ2(H(x) +Hc,θ1(ξ),

Kθ3(
r∑

i=1

βi,θi+3
(z⊤vi)))

and solve the training problem

min
θ1,...,θr+3,ξ∗

∥∂Vθ(z)

∂z
|z∗∥

+ ReLU
(
−λmin

(
∂2Vθ(z)

∂z2
|z∗ − aI

))
, (10)

where aI with a > 0 is to promote local con-
vexity of Vθ.

Performance Guarantees

Suppose the loss in (10) after training is ϵ.
When ϵ is sufficiently small, the distance be-
tween the local minimum z̄ of Vθ and the de-
sired equilibrium z∗ is also small, satisfying

∥z̄ − z∗∥ ≤ ϵ

a− ϵ
, (11)

that is, the control bias decreases linearly
w.r.t. training loss.

Simulation Result

Set-point control of pendulum system
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Fig. 1 Learned Lyapunov function Vθ(q, p, ξ
∗)
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Fig. 2 The error ∥z̄ − z∗∥ and the bound ϵ
a−ϵ

for different values of a

Conclusion
■ Propose an NN-based approach to facilitate the design of energy Casimir control. Do not

require solving convoluted PDEs for equilibrium assignment. The difference between the
desired and achieved equilibrium point can be bounded in terms of the training loss.

■ Further work will be devoted to extending the proposed framework to other controller design
procedures for PHSs.


