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Our Motivation for the Research

Parametrized Dynamical System: for parameter u € M,q and input u € U 4

y(t) = f(t,y(t),u(t);n) fort >0, y(0) =y, z(t)=h(t,y()) fort >0

Optimal Design and Control.:
- optimal feedback (MPC, tailored open-loop optimization methods)

- optimal experimental design (bilevel optimization, inverse problems)
- multiobjective aspects (optimal compromises, set-oriented methods)
- network optimization (complex couplings, different types of dynamical systems)

" Bleeding at day 25: Optimal treatment
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Our Foci: PDEs, model-order reduction (MOR), fast optimization algorithms
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Outline of the Talk

1 Optimal EPO Dosing in Hemodialysis

2 Extended DMD

3  Empirical Gramian-Based Approach

4  Conclusion and Outlook
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1 Optimal EPO Dosing in Hemodialysis

1 Optimal EPO Dosing in Hemodialysis

References:

[1] Beermann: Reduced-order methods for a parametrized model for erythropoiesis involving structured population equations with one structural
variable, 2015

[2] Fuertinger: A model of erythropoiesis, 2012

[3] Fuertinger/Kappel/Thijssen/Levin/Kotanko: A model of erythropoiesis in adults with sufficient iron availability, 2013

[4] Grune/Pannek: Nonlinear Model Predictive Control: Theory and Algorithms, 2016

[5] Rogg/Fuertinger/V./Kappel/Kotanko: Optimal EPO dosing in hemodialysis patients using a non-linear model predictive control approach, 2019

4/19 May 24, 2022 Data-driven Modeling and Control of Complex Dynamical Systems Stefan Volkwein



1 Optimal EPO Dosing in Hemodialysis - 1.1 Medical Background

Hormone EPO (Erythropoietin):
- produced in kidneys

- drives production of new red blood cells (erythrocytes)
- low EPO levels cause neocytolysis (active reduction of erythrocytes)

maturation

apoptosis \ neocytolysis
o0 - % 2.8 °'0®
o2 o° ©%e0°
() .. oe°® ([ ] %‘
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Chronic Kidney Disease:
- insufficient production and release of EPO

- chronic anemia (chronic lack of blood)
- exogenous EPO administration during hemodialysis treatments

Question: What are the ,optimal“ EPO doses?
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1 Optimal EPO Dosing in Hemodialysis - 1.2 Control Input

Control Input [5]:

- administration time points (3 times per week): #{,#3,13, ... ,t, € [to, ]

- find EPO dose in [0, Ena.x] for every ¢

- vector u= (up,...,un) ER™, Uyg={ueR™ [ 0<u; <1 for1 <i<m}

EPO Concentration in the Blood:

- E(t,u) = E®(t,u) + E*" with remaining endogeneous E"d 3000 ——————

- ES(tw) = o Xouigi(0) with () = Emaxe™ g (1) 2 .
1= u =
and total blood volume ¢, > 0 1000 K\ — =12

. Eend
0

02 4 6 8 10
time [days]
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1 Optimal EPO Dosing in Hemodialysis - 1.3 State or Primal Equation

State Vector: y = (yy,...,ys) with population densities y;(¢,x) and maturity x € [a;,b;] o BFU-E
Model Equations [1, 2, 3]
maturation velocity proliferation apoptosis ¢ CFyLzJ_E
/—Jh /\ 7 - N
vi(t,x)+  v(E(ru))  ye(t,x) = ( B — a(E(r.u),x))y(t,x), Y(to,x) = yo(x) |
y3
Boundary Conditions: y
© Reticulocytes
yi(t,ar) = So, yo(t,a2) = yi(t,b1), y3(t,a3) = y2(t,b2) 4
b
y4(t (14) = }](3/5(27 131))) , Vs (t, (15) =V (E([. Ll)) y4(t, b4) ® Eryth;?cytes

Patient-Depending Coefficient Functions:

062(E) =

Hy

Control Input: E(t,u) =

1+exp (IE — 13)’

05 (E,x) = 0 + Xz e () - 05 (E),

L ¥ wigir) + E with (1) =
Vi=1

Emaxe
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1 Optimal EPO Dosing in Hemodialysis - 1.4 Objective for the Problem

Desired Total Population: hemoglobin target range of 10-11 g/dl

bs
Total Erythrocytes Population: [ ys(¢,x)dx

as
Cost Functional [5]:

(079) I
2 Ji

bs 2 O¢ bs 2 m ’
J(y,u) = / yS(tax)dx_)’d‘ df+7‘/ )’S(tfax)dx_)’d‘ +§Z?’i|ui|
a as i=1

5

with weights cq,0r,7;, > 0
E(t,u) [mU/ml]
target range, yg (# % 1012) 3000 T T T T

maturation 14
apoptosis \ neocytolysis — 2000 B
v ° ‘ag® P y=1
o.: Q:‘ Lo 0% % , w00 \\K =12
.. ‘ “ ‘ " . . %‘ 0 ‘ Eend
I N B
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1 Optimal EPO Dosing in Hemodialysis - 1.5 Nonlinear Model Predictive Control

Goal: closed-loop/feedback control taking into account changes in parameters and data

Algorithm 1: Nonlinear model predictive control [4, 5]
1. Get initial time 7, € [0, T| and initial condition y.;
2. Choose prediction horizon AT = NAr and set t; =, + AT
3. Minimize the cost (by projected BFGS method with Armijo line search)

/ ys(tg,x) dx — }’d‘ + = Z%Iui|2

(079) bs
J(ya u) — 5

2 Of
£.x) dx — ‘ dr+2F
5 ys5(t,x) Vd + 5

as

subject to PDE constraints and bilateral control constraints;
2. Apply only the first component of the resulting optimal control;
5. Set new initial time ¢, = 1, + Ar and repeat iteratively

Problem: nonconvexity due to the nonlinearities

Idea: linearize the model to get a convex linear-quadratic open-loop problem
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2 Extended DMD

2 Extended Dynamic Mode Decomposition (EDMD) for MPC
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2 Extended DMD - 2.1 DMD with Control (DMDc)

DMD
Idea of DMDc 17,11} ki1 = F (te, yi ) = CAyk—l—Buk fork>0and yy =y,

Computation: for Yo = [yo|...|ym-1], Yi = D1|---|ym|, U = [uo]|...|um—1] Solve

T

ol g eigendecomposition of A for MOR

[A,B] = argmin ||Y; —AYy—BU|, — [A|B] =Y, U

AB

Approximation for time-varying systems: computation of time-varying DMDc s, 12, 13]

leg Constant kappa and constant v leg  Usual kappa and constant v le8 Usual kappa and usual v les Constant kappa and constant v les  Usual kappa and constant v le8 Usual kappa and usual v
o
s
- e 22 o
Z. s,
g g o
82 32 25
o
—— Finif iff
o
ooooo
ooooooo N
1 T
g
2 2 e e
oooooooooooooooo LN
L]
H E £
< = x x ¥
2 2 1 *i;( X X11 XX ¥ ox x X
2 2 Xy 107 x X ¥ g og 10¢ X x5 ox
& -2 VN A R % g %
X x X x X
:

11/19 May 24, 2022 Data-driven Modeling and Control of Complex Dynamical Systems Stefan Volkwein



2 Extended DMD - 2.2 MPC approach for optimal EPO dosing in Hemodialysis

Extended Dynamic Mode Decomposition (EDMD) 110, 11)

Discrete Dynamical System: yo = yo, yki1 = F (tx, i, ux) and zx = h(ty, y;) for k >0
Lifting/observable functions: y = (y1,...,y,,) : R" — R" with ny, <n

Computation: for Yo = [w(yo) | ... [ WOm-1)], Y1 = [wO1) |... |[wOm)], U = [uo|...| um_1] solve

[A,B] = argmin ||V} —AYy—BU||, C =argmin||¥y—CYyl|,
AB C

Surrogate model: $o = W(y.), ftr1 = Ak + Buy and z ~ 5, = C for k > 0
Objective: Recall that

(079)

J<y7u) — 5

bs
.F
—/ ys(t,x) dx — yd‘ + = Z%|Mi|2
2 2 1Ja

5

=- applying of DMDc only for the ys variable
= utilize 3 to seven Legendre polynomial evaluation of the snapshots for the y;’s
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2 Extended DMD - 2.3 Numerical Results for real Patients

Hemoglobin [g/dl]

Relative error

107t
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3 Empirical Gramian-Based Approach

3 Empirical Gramian-Based Approach
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3 Empirical Gramian-Based Approach - 3.1 Empirical Gramians

Linear Time Invariant (LTI) System:
y(t) = Ay(t) + Bu(t) fort >0, x(0)=y., z(t) =Cy(t) fort >0
Controllability Gramian [19]:
W= [ T MBBTAdr = / " (eMB) (¢7B) i
Observability Gramian [19]:

W, = /O A CTCeM dr = /0 () (M e ar

Linear Time Variant System:
y(t) =A(t)y(t) +Bu(t) +g(¢) fort >0, x(0) =y-, z(t) =Cy(t) fort >0

= extension by empirical gramians which are based on simulations only
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3 Empirical Gramian-Based Approach - 3.1 Empirical Gramians

Linear Time Variant System:

y(t) =A(t)y(t) +Bu(t) +g(t) fort >0, x(0)=yo, z(t) =Cy(t) fort >0 (1)

Empirical Controllability Gramian [15, 16:

- r K P 1
We=3 ) L
[=1m=1

2
= rsc;,

[y @awith v = (570 -5 (70 -5

where y""(t) € R™ solves (1) corresponding to the impulse input u(t) = ¢, Tje;5(t) with
varying positive scalars ¢,,, orthogonal matrices 7; and unit vectors e;

Empirical Observability Gramian [16, 17, 18]:

R ros 1
Wo=2 )
[=1m=1

- rSC%i/() T}Zm(t)]} dr with Zi]r-n(t):(zlm(t)_zl ) (ij(l‘)—zjm)

where z/"(¢) € R™ is the output of (1) corresponding to the initial condition y, = ¢, Tje;.
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3 Empirical Gramian-Based Approach - 3.2 Model Reduction by Balancing Transformation

Singular Value Decomposition for Balancing [14, 15]:

~1/251/2 T _ ¥ 0 T (UL V) 0
N L kR IUIT I G

Reduced-Order Modeling: y(¢) ~ U;y‘(z)
¥ (1) = VT AU ]y (1) + [ViT BJu(r) +g(¢) for £ € (0,71, y(0) =V;'yo
(1) = [cur)y'(r) for € [0, ]
Quadratic Cost functional: J(y,u) = 1 [T ||z(t) — zo(t)|[5dz + S Ji |Ju(t)||5ds
First-Order Optimality System: u(t) =B' p(t)/o, q(t) = p(T —1)
%(t) = D(t)x(t) +D(t)x(T —t) +G(t) fort € (0,T), x(0) = x,

for x = (y,q) and appropriate D(t), D(¢) and G(t)
= apply empirical gramian approach for (2) (instead of POD)
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3 Empirical Gramian-Based Approach - 3.3 Numerical Example

Dynamical System: heat equation with time varying convection

8aytu (t,x) — AAy,(t,x) + a(t) (v(x) - Vyu(t,x)) = u(t,x) + f(x), (1,%) € Qr
%yét(f") Tults) =0, (t,8) € X1
yu(O,X) :yo(-x), xecQ

First-Order Optimality System: localized distributed control
x(t) = D(a(t))x(t) + Dx(T —t) + G(t) fort € (0,T), x(0) = x, (3)

Input for (3): o(t) = c;uTreib(t)

CPU time speed-up

gramian  POD Full model  465.0s -
Relative errorinu  2.31-107% 1.13-107! Gramian 43.1s (+ 51.5s) 10.8 (4.8)
POD 42.7s (+225.8s) 10.9 (1.7)
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4 Conclusion and Outlook

Conclusions and Outlook

Conclusions:
- MPC for a nonlinear model describing EPO treatment

- speed-up by utilizing linearization based on EDMD
- empirical gramian approach for first-order optimality system

Outlook:
- properties of the EDMD approximation

- update strategies for EDMD
- comparison to other linearization techniques

More informations on our group: https://www.mathematik.uni-konstanz.de/volkwein

Thank you for your attention!
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