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Port-Hamiltonian DAEs (pHDAEs)

Recently, it has been shown |2| that linear time-invariant DAEs

d _
&EX — Ax + Bu

with (E, A, B) € X, pm = R™™ X R™" x R®"™"™ are generically controllable; for a definition see |1|. This means that a random choice of
(E, A, B) yields a controllable DAE with probability one. We consider port-Hamiltonian DAEs

CEx = (J-R)Qx + Bu

J' =—J R'"=R>0,E'Q=Q'E>0

n,n,m

Within VPH .= {(E, J,R,Q,B) € (Rm*m)* x Rv*m | JT = _J RT = R}, denote

Y m = {(E,J,R,Q,B)eVP! |E'Q=Q"E} n {(E,J.R,Q,B)e VP |E'Q>0} n {(E,J,R,Q,B) VP, |R>0}
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We show that pHDAESs are generically controllable, i.e.
e pHDAESs are with controllable with probability one

e controllability is invariant under small perturbations

Relative genericity

Mathematically, probability one is expressed in terms of a measure space (X, >, ) as follows:
S C X is generic <= S contains a u-conull set.
Mathematically, invariance under small perturbations is expressed in terms of a topological space X as follows
S C X is generic <— S contains an open and dense set.

For R”, Wonham uses the Zariski topology (see below) to unify both approaches |[4|. This concept was generalized in 3| to take the additional
port-Hamiltonian structure into account:

S C R" is relative generic in a reference set V C R" <= S contains some Zariski open, Euclidean dense set.

Zariski topology Theorem on controllability

The Zariski t ] R™ ] j
© 4AallSRI LOPOIogy o1l - Recall the well-known algebraic criteria for five controllability concepts [1|. Denote the nonsingular

k points of V with Reg(V).
ZT = {Rn \ m p ({01 | ps polynomial} . The following sets are relative generic in Reg(V) N Ci NC5 C Zg’%’m, i.e. have probability one:
i=1

Tt can be shown that {(E,J,R,Q,B) e ¥ ‘ (E,(J — R)Q, B) freely initializable }

ZT C{O CR" ‘ O open conull set} U {0} {(E,J,R,Q, B) € P! m ‘ (E,(J — R)Q, B) impulse controllable }

, T

for the Lebesgue measure and the Euclidean
topology. For analytic submanifolds V' we
have

{(E, J,R,Q,B) ¢ Yr m ‘ (E,(J — R)Q, B) behavioural controlla,ble}

NG

{(E,J,R,Q,B) € Y, | (E,(J — R)Q, B) completely controllable }

, T

ZTNVC{oCV | O open conull set} U {0}
{(E,J,R,Q,B) e L | (E,(J— R)Q,B) strongly controllable }

with the Riemann-Lebesgue measure. "
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