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= Challenge: non-linear control policies are required

* Linear systems and quadratic cost
(Witsenhausen counterexample)

 Non-linear systems and/or non-quadratic cost Deep Neural Networks
(DNNs) for parametrizing

non-linear policies
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Challenges of using DNN policies

= Closed-loop stability guarantees while optimizing transient performance?
« Not with general multilayer perceptron networks

N / « Performance optimization over [0, T]

)
min/ X — x*|[2 + ||ul[Pat
0

_2 -
s.t. MLP-controller

-4 4

- Stability if controller applied for t > T?

_6_
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= Stability if optimization stops prematurely?
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Challenges of using DNN policies

b 0, O

= Vanishing gradients during optimization ¢ ¢, G G G
» Backpropagation — Gradient descent

aﬁ aCj+1 H aCEH oL

// // (=j+1 aCE 8CN
———
or o Backward
. If ~ 0 —s J Local minima? © sensitivity
00; BSM small? & matrix (BSM)

= Optimization for a long control horizon = optimization of a DNN

~ deep neural network

(discretization)
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Challenges of using DNN policies

= Distributed NN control architectures

Graph Neural Networks for Distributed Linear-Quadratic Control

Fernando Gama® FGAMA@BERKELEY.EDU and Somayeh Sojoudi s0OJOUDI@BERKELEY.EDU
Electrical Engineering and Computer Sciences Dept., University of California, Berkeley, CA 94709, USA

Communication Topology Co-Design in Graph Recurrent Neural Network
based Distributed Control

The linear-quadratic c(
solution is a linear cont Fengjun Yang! and Nikolai Matni*

Abstract— When designing large-scale distributed con- enjoy approximation guarantees, see for example [1]-[4

PN | PN 4L 2 odd o 4 Leodeun oo

» A posteriori analysis of the closed-loop stability

= Question: Distributed NN controllers guaranteeing closed-loop stability
by design?

(3}
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Our contributions

For port-Hamiltonian systems:

= NN model-based controllers guaranteeing closed-loop stability
» Optimization of an arbitrary cost over a finite horizon

;
min /e(x(t),u(t),e(t))dt
0

o(t)
s.t. closed-loop stability

= Additional requirement:
Non-vanishing gradients during optimization

= ... even in a distributed setting!

Clara Galimberti L
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Outline

= Optimal control problem with pH-NN controllers
« Port Hamiltonian systems
* pH-NN controller architecture

= Distributed implementations of pH-NN controllers

= Numerical validations
» pH-NN controllers for robots navigation task

= Conclusions
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= Distributed implementations of pH-NN controllers

= Numerical validations
» pH-NN controllers for robots navigation task

= Conclusions
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Port-Hamiltonian (pH) systems?

(t) = (@ - XD | gy
oV (x(t)) X = 2 skew-symmetric
y() = G—5— -R>0

= V: Hamiltonian function

« Continuously differentiable
« Radially unbounded

. oV
= Attractivity: tllg)lo X(t) € {Ra = O}

5 PH
= Compositionality: =
5 PH

T A. van der Schaft and D. Jeltsema. "Port-Hamiltonian systems theory: An introductory overview." Foundations and Trends in Systems and
Control 1.2-3 (2014): 173-378.

©
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=PFL  Port-Hamiltonian (pH) systems!

(t) = (@ - XD | gy
oV (x(t)) X = 2 skew-symmetric
y() = G—5— -R>0

= V: Hamiltonian function

« Continuously differentiable
« Radially unbounded

. oV
= Attractivity:  lIm X(t) € {R— = O}

t—o0 8X
_ pH
- ZCL,0

T A. van der Schaft and D. Jeltsema. "Port-Hamiltonian systems theory: An introductory overview." Foundations and Trends in Systems and
Control 1.2-3 (2014): 173-378.

= Compositionality:
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=PFL NN controllers
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= J. skew-symmetric
oD (&(1), 1) « Ro>=0

= Elements in green are free to be chosen!

« ®: time-varying Hamiltonian function |
* Continuously differentiable - Use a (deep) NN for parametrizing ®
- Radially unbounded l

©(&(1), 1) = (&(1), U,(1))

Dissipativity in Systems and Control

= pH NN controllers ¢ NeuralODESs'

Trends on

TR.T. Chen, Y. Rubanova, J. Bettencourt, and D.K. Duvenaud, “Neural ordinary differential equations”, Advances in neural information processing
systems, vol 31, 2018.
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NN controllers
® Layer 0 Layer 1 Layer k : Layer N
FeEe e 88
(d/scretlzat/on)

.
= Choose @ minimizing the cost: £ = / £(x(t), u(t), 6(1)) dt
0

= Analogous to NN training!

* Number of layers: N - Lpr = Z KDT(XK, Uy, 9k)
- Discretization step size: h=T/N =0

= Closed-loop stability — For an arbitrary T > 0, i.e. arbitrary network depth

\—> When 0" is a local minima

.. but also before convergence!——l.e. for 6 such that VoL # 0

[y
N
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Non-vanishing gradients during training

Clara Galimberti

Theorem'. If no dissipation in the loop, then

locir 3>
o¢(T -1t —

¢ - system state
~ |controller state

Interconnection matrix of

= Why? the closed-loop system
oc(T) . . ac(Ty \' ! a¢(T
5T — 1) is symplectic, i.e. W = (8C(T - t)) v 9T — D

H pH pH pH
Zp N ...
L.0 p
(o) BB &5 Iy (rr CCEON CLo ¢

TL. Furieri, C. Galimberti, M. Zakwan and G. Ferrari Trecate, “Distributed neural network control with dependability guarantees: a compositional
port-Hamiltonian approach”, arXiv preprint arXiv:2112.09046, 2021.
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Outline

= Optimal control problem with pH-NN controllers
« Port Hamiltonian systems
* pH-NN controller architecture

= Distributed implementations of pH-NN controllers

= Numerical validations
» pH-NN controllers for robots navigation task

= Conclusions
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Distributed pH NN controllers

: : Network of pH systems

* power-preserving interconnections

= : Network of pH controllers?

* Local energy: ®;(&;, neighbors(&)))
e.g. (&, &)

9%;

» pH if £; depends on 72

\

NO

only?

[y
o
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Distributed pH NN controllers
= Solution:

« Define a global energy O =) O,
- Make &, depend on as

= Communication requirements? (setj = 1)

00 00:(£,,£) | 992(61.6,.6) h
DE, 3 B3 \

&5 is needed
,~ inlocation 1!

[ The given network is not enough! ]

= Problem: on which controller states should ¢; depend upon?
« for the prescribed communication network
 while guaranteeing to be pH

[y
(-]
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Distributed pH NN controllers

« U ____, prescribed communication network
« Go—— which local energy depends upon which state

Clara Galimberti

Theorem'. Let G, be the communication graph describing the state de-
pendencies of the local energies. Then, the NN control policies are distributed

according to a prescribed interconnection network G if
Trivial solution:
GCCgG. Local energies only depend
¢ = on local states, i.e.
oi(&), Vi=1,...M

= Extension including input-output coupling between controllers can be found in [1]

TL. Furieri, C. Galimberti, M. Zakwan and G. Ferrari Trecate, “Distributed neural network control with dependability guarantees: a compositional
port-Hamiltonian approach”, arXiv preprint arXiv:2112.09046, 2021.
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: : ) ®
= 12 mobile robots in xy-plane 4 -
* Modelled by linear point masses * ®
2 -
® ®
0 -
* Objective: navigation (x — o) within a given % ®
time T + collision avoidance w2 ® -
 Prestabilized dynamics around X (o) —4 -
® ®
£ « Finite horizon stage cost: /g + {ca + (R —> 0 >
g / i \
? Quadratic loss penalizing: Collision Regularization loss for pH-DNNs
2 - Distance to target point &||avoidance loss
3 «  Non zero velocity < i
U * Input magnitude Smoothing
2 parameters across
- distance(i, j) Iayers
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Navigation task using pH NN distributed controllers

Robot trajectories before training
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https://github.com/DecodEPFL/DeepDisCoPH
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=PFL  Navigation task using pH NN distributed controllers "
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= Early stopping of the training: g
o
Robot trajectories - trained for 75 epochs Robot trajectories - trained for 150 epochs Robot trajectories - trained for 225 epochs
10 1 10 10
51 ° ° 5 - ° o 5 - ° o
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25% of the training 50% of the training 75% of the training
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[ Stability is always guaranteed }

Gifs can be found in our GitHub repository:
https://github.com/DecodEPFL/DeepDisCoPH
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Navigation task using pH NN distributed controllers

= Replacing neural port-Hamiltonian controllers with MLP networks

7.5 1
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Results after training — even when not considering collision avoidance
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=PFL  Navigation task using pH NN distributed controllers

= Gradients during training
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Backward sensitivity matrix norm
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Conclusions

= pH NN control policies:

« Stability of the closed loop by-design, i.e. for arbitrary parameters
* Non-vanishing gradients during training

« Distributed implementations complying with pH structure

= Next steps?
« Stable NN controllers by design beyond pH? —— [2]
» Going data-driven: How to incorporate uncertainties in the system modelling?

[2] L. Furieri, C. Galimberti and G. Ferrari Trecate, “Neural System Level Synthesis: Learning over All Stabilizing
Policies for Nonlinear Systems”, arXiv preprint arXiv: 2203.11812, 2022.
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Thank you for

your attention!
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