

A Compositional port-Hamiltonian Approach of Distributed Neural Network Optimal Control with Stability Guarantees

Luca Furieri

Clara Galimberti

Muhammad Zakwan

Giancarlo Ferrari Trecate

DECODE group, EPFL

Optimal distributed control

Largescalesystems

Optimal
distributed
control

- Challenge: non-linear control policies are required
 - Linear systems and quadratic cost (Witsenhausen counterexample)
 - Non-linear systems and/or non-quadratic cost

Deep Neural Networks (DNNs) for parametrizing non-linear policies

rends on Dissipativity in Systems and Cont

EPFL

Challenges of using DNN policies

- Closed-loop stability guarantees while optimizing transient performance?
 - Not with general multilayer perceptron networks

• Performance optimization over [0,T]

$$\min \int_0^T ||x - x^*||^2 + ||u||^2 dt$$

s.t. MLP-controller

Stability if controller applied for t > T?

Stability if optimization stops prematurely?

- Vanishing gradients during optimization
 - Backpropagation → Gradient descent

$$\frac{\partial \mathcal{L}}{\partial \theta_{i,j}} = \frac{\partial \zeta_{j+1}}{\partial \theta_{i,j}} \underbrace{\prod_{\ell=j+1}^{N-1} \frac{\partial \zeta_{\ell+1}}{\partial \zeta_{\ell}}}_{\text{Backward}} \frac{\partial \mathcal{L}}{\partial \zeta_{N}}$$

• If
$$\frac{\partial \mathcal{L}}{\partial \theta_{i,i}} \approx 0 \rightarrow \frac{\text{Local minima?} \odot}{\text{BSM small?}}$$

sensitivity matrix (BSM)

Optimization for a long control horizon ≡ optimization of a DNN

Trends on Dissipativity in Systems and Control

Challenges of using DNN policies

Distributed NN control architectures

Graph Neural Networks for Distributed Linear-Quadratic Control

Fernando Gama* FGAMA@BERKELEY.EDU and **Somayeh Sojoudi** SOJOUDI@BERKELEY.EDU Electrical Engineering and Computer Sciences Dept., University of California, Berkeley, CA 94709, USA

Communication Topology Co-Design in Graph Recurrent Neural Network based Distributed Control

The linear-quadratic cosolution is a linear cont

Fengjun Yang† and Nikolai Matni*

Abstract—When designing large-scale distributed con- enjoy approximation guarantees, see for example [1]-[4]

- A posteriori analysis of the closed-loop stability
- Question: Distributed NN controllers guaranteeing closed-loop stability by design?

Trends on Dissipativity in Systems and Control

Our contributions

For port-Hamiltonian systems:

- NN model-based controllers guaranteeing closed-loop stability
 - Optimization of an arbitrary cost over a finite horizon

$$\min_{\theta(t)} \int_0^T \ell(\mathbf{x}(t), \mathbf{u}(t), \boldsymbol{\theta}(t)) dt$$

s.t. closed-loop stability

- Additional requirement:
 Non-vanishing gradients during optimization
- ... even in a distributed setting!

Outline

- Optimal control problem with pH-NN controllers
 - Port Hamiltonian systems
 - pH-NN controller architecture
- Distributed implementations of pH-NN controllers
- Numerical validations
 - pH-NN controllers for robots navigation task
- Conclusions

Outline

- Optimal control problem with pH-NN controllers
 - Port Hamiltonian systems
 - pH-NN controller architecture
- Distributed implementations of pH-NN controllers
- Numerical validations
 - pH-NN controllers for robots navigation task
- Conclusions

Port-Hamiltonian (pH) systems¹

$$\dot{\mathbf{x}}(t) = (\mathbf{\Omega} - \mathbf{R}) \frac{\partial V(\mathbf{x}(t))}{\partial \mathbf{x}} + \mathbf{G}^{\mathsf{T}} \mathbf{u}(t)$$
$$\mathbf{y}(t) = \mathbf{G} \frac{\partial V(\mathbf{x}(t))}{\partial \mathbf{x}}$$

- Ω skew-symmetric
- **R** ≻ 0

- V: Hamiltonian function
 - Continuously differentiable
 - Radially unbounded

• Attractivity:
$$\lim_{t \to \infty} \mathbf{x}(t) \in \left\{ \mathbf{R} \frac{\partial V}{\partial \mathbf{x}} = 0 \right\}$$

• Compositionality:

$$\sum_{pH} \sum_{cl} \sum_{cl}$$

¹ A. van der Schaft and D. Jeltsema. "Port-Hamiltonian systems theory: An introductory overview." Foundations and Trends in Systems and Control 1.2-3 (2014): 173-378.

Port-Hamiltonian (pH) systems¹

$$\dot{\mathbf{x}}(t) = (\mathbf{\Omega} - \mathbf{R}) \frac{\partial V(\mathbf{x}(t))}{\partial \mathbf{x}} + \mathbf{G}^{\mathsf{T}} \mathbf{u}(t)$$
$$\mathbf{y}(t) = \mathbf{G} \frac{\partial V(\mathbf{x}(t))}{\partial \mathbf{x}}$$

- Ω skew-symmetric
- R ≥ 0

- V: Hamiltonian function
 - · Continuously differentiable
 - · Radially unbounded

• Attractivity:
$$\lim_{t \to \infty} \mathbf{x}(t) \in \left\{ \mathbf{R} \frac{\partial V}{\partial \mathbf{x}} = 0 \right\}$$

• Compositionality:

$$= \sum_{CL,}^{pH}$$

rends on Dissipativity in Systems and Co.

¹ A. van der Schaft and D. Jeltsema. "Port-Hamiltonian systems theory: An introductory overview." *Foundations and Trends in Systems and Control* 1.2-3 (2014): 173-378.

$$\dot{\boldsymbol{\xi}}(t) = (\mathbf{J}_c - \mathbf{R}_c) \frac{\partial \Phi(\boldsymbol{\xi}(t), t)}{\partial \boldsymbol{\xi}} + \mathbf{G}_c^{\top} \mathbf{y}(t)$$

$$\mathbf{u}(t) = \mathbf{G}_c \frac{\partial \Phi(\boldsymbol{\xi}(t), t)}{\partial \boldsymbol{\xi}}$$

- J_c skew-symmetric
- $\mathbf{R}_c \succeq \mathbf{0}$

- Elements in green are free to be chosen!
- Φ: time-varying Hamiltonian function
 - Continuously differentiable
 - · Radially unbounded

Use a (deep) NN for parametrizing Φ

$$\Phi(\xi(t), t) = \Phi(\xi(t), \theta_{\phi}(t))$$

NN controllers

- Choose θ minimizing the cost: $\mathcal{L} = \int_0^T \ell(\mathbf{x}(t), \mathbf{u}(t), \boldsymbol{\theta}(t)) dt$
- Analogous to NN training!

Analogous to NN training!

• Number of layers:
$$N$$
• Discretization step size: $h = T/N$
 $\mathcal{L}_{DT} = \sum_{k=0}^{N} \ell_{DT}(\mathbf{x}_k, \mathbf{u}_k, \boldsymbol{\theta}_k)$

- Closed-loop stability \longrightarrow For an arbitrary T > 0, i.e. arbitrary network depth → When θ* is a local minima
 - ... but also before convergence! \longrightarrow I.e. for θ such that $\nabla_{\theta} \mathcal{L} \neq 0$

Non-vanishing gradients during training

Clara Gallinber

Theorem¹. If no dissipation in the loop, then

$$\left\|\frac{\partial \zeta(T)}{\partial \zeta(T-t)}\right\| \geq 1$$

$$\zeta = \begin{bmatrix} \text{system state} \\ \text{controller state} \end{bmatrix}$$

Interconnection matrix of

• Why?

the closed-loop system
$$\frac{\partial \zeta(T)}{\partial \zeta(T-t)} \text{ is symplectic, i.e. } \mathbf{\Psi} = \left(\frac{\partial \zeta(T)}{\partial \zeta(T-t)}\right)^{\top} \mathbf{\Psi} \frac{\partial \zeta(T)}{\partial \zeta(T-t)}$$

¹ L. Furieri, C. Galimberti, M. Zakwan and G. Ferrari Trecate, "Distributed neural network control with dependability guarantees: a compositional port-Hamiltonian approach", *arXiv preprint arXiv:2112.09046*, 2021.

Outline

- Optimal control problem with pH-NN controllers
 - Port Hamiltonian systems
 - pH-NN controller architecture
- Distributed implementations of pH-NN controllers
- Numerical validations
 - pH-NN controllers for robots navigation task
- Conclusions

Distributed pH NN controllers

- : Network of pH systems
 - power-preserving interconnections
- : Network of pH controllers?
 - Local energy: $\Phi_i(\xi_i, \text{neighbors}(\xi_i))$ e.g. $\Phi_1(\xi_1, \xi_2)$
 - pH if $\dot{\xi}_i$ depends on $\frac{\partial \Phi_i}{\partial \xi_i}$ only?

Distributed pH NN controllers

- Solution:
 - Define a global energy $\Phi = \sum \Phi_i$
 - Make $\dot{\xi}_i$ depend on $\frac{\partial \dot{\Phi}}{\partial \xi_i}$
- Communication requirements? (set i = 1)

$$\frac{\partial \Phi}{\partial \xi_1} = \frac{\partial \Phi_1(\xi_1, \xi_2)}{\partial \xi_1} + \frac{\partial \Phi_2(\xi_1, \xi_2, \xi_3)}{\partial \xi_1}$$

 ξ_3 is needed in location 1!

The given network is not enough!

- Problem: on which controller states should Φ_i depend upon?
 - for the prescribed communication network
 - while guaranteeing to be pH

Distributed pH NN controllers

- $\mathcal{G} \longrightarrow$ prescribed communication network
- \mathcal{G}_{Φ} \longrightarrow which local energy depends upon which state

Theorem¹. Let \mathcal{G}_{ϕ} be the communication graph describing the state dependencies of the local energies. Then, the NN control policies are distributed according to a prescribed interconnection network \mathcal{G} if

$$\mathcal{G}_\phi^{\mathsf{2}} \subseteq \mathcal{G}$$
 .

Trivial solution: Local energies only depend on local states, i.e.

$$\Phi_i(\boldsymbol{\xi}_i)$$
, $\forall i = 1, ..., M$

Extension including input-output coupling between controllers can be found in [1]

¹ L. Furieri, C. Galimberti, M. Zakwan and G. Ferrari Trecate, "Distributed neural network control with dependability guarantees: a compositional port-Hamiltonian approach", *arXiv preprint arXiv:2112.09046*, 2021.

Outline

- Optimal control problem with pH-NN controllers
 - Port Hamiltonian systems
 - pH-NN controller architecture
- Distributed implementations of pH-NN controllers
- Numerical validations
 - pH-NN controllers for robots navigation task
- Conclusions

Collision

avoidance loss

distance(i, j)

- 12 mobile robots in *xy*-plane
 - Modelled by linear point masses

- **Objective:** navigation ($\star \rightarrow \circ$) within a given time T + collision avoidance
- Prestabilized dynamics around $\bar{\mathbf{x}}$ (\circ)

C.A. Loss

- Distance to target point
- Non zero velocity
- Input magnitude

Regularization loss for pH-DNNs

Smoothing parameters across layers

Navigation task using pH NN distributed controllers

Zero collisions after training

Stability is guaranteed by design

Gifs can be found in our GitHub repository: https://github.com/DecodEPFL/DeepDisCoPH

Trends on Dissipativity in Systems and Control

Navigation task using pH NN distributed controllers

Early stopping of the training:

Stability is always guaranteed

Navigation task using pH NN distributed controllers

Replacing neural port-Hamiltonian controllers with MLP networks

Results after training → even when not considering collision avoidance

No stability guarantees

Navigation task using pH NN distributed controllers

Gradients during training

Backward sensitivity matrix norm

Conclusions

- pH NN control policies:
 - Stability of the closed loop by-design, i.e. for arbitrary parameters
 - Non-vanishing gradients during training
 - Distributed implementations complying with pH structure

- Next steps?
 - Stable NN controllers by design beyond pH? ——— [2]
 - Going data-driven: How to incorporate uncertainties in the system modelling?

Thank you for your attention!